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VII ihwory of Lie suock Vv.avee Introduction

1n Wha preceuding gxpopilien WO have omp. asleed thoge cavas Lor
chhchwdmn;HMWMmMQ(bwmlm\UmcmmmmofcmmUmmmlmm-
grre dietritutions and vBing i rferential gquations Lo deserile the
o enomena vt nob congidering viscasity and heul Lrangiur) mel soma
arfrievlves i rocall Lho cLaracter ol Lieue difficulties.

1n bae seeuion on Lae proparabion of sound we have shown biab
:gawdmucwwenmmcbhmanMgimlmmumwmn The Yercuts
of the waves," 1,6, Uhove puints al waich Lae moburial is conprossed
and moves in the direction ol prOpuwaLLon ol bie wuve, [0 forward,
on the otler aand e nyproushs®, 1.¢e ropions ~f rarefuction where
Loe velocivy of motion hias & direction opposite to tiat of the
propagation of sound, all lar Lehind toe wave. Tius, in deforming,

’ tue acousLic wave appeurs o Le curving overs This phonomenon is

when
analopous Lo tho one ouserved where Lhe ocean waves run aguinst a

o
slopinp share.

As ve have cxylained Lefore thnis analopy, Letween plienomena of
pasdynamics and paenomend in a liquid with a free surface, is of &

profound chapacter, 1n both cases there is a tendeucy for a gporn=

.
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50X1-HUM

THEORY OF SHOCK WAVES AND INTRODUCTION

Ya. Is, Zel'dovich
[Refer to oco-w=12269 for- camrle're, table of Contenls]
VII ‘Thoory of the shock vave. Introduction
In the preceodinp oxposition we have omphasized those cases for
which classical pasdynamics (bansed on the concapt ol continuous pree-
sure disiritutions and using differential equations to doscribe the
phonomena but not considering viscoeity and hoat transfor) met some
diflicultfas vle recall the character of these difflculties,
In the sechion on bhie propagation of sound we have shown that

i ii? ucoustic wave musl deform during its propazation. The "crusts
of the waves,", i.e. those points al which the material is compressed
and moves in the direction of propagation ol the wave, go forward,

On the other lLand the "troupghs", i.e. regions of rarefaction where
the velocity of motion has a direction oppocite to that of the
propagation of sound, all lag behind the wave., Tius, in deforming,

’ the acousbic wave appears to be curving over. This phenomenon is
analogous to the one observed Jﬁ@:? the ocean waves run against a
sloping shﬁ}e.

As we have explained before this analogy, between plienomena of
gasdynamics and phenomena in a 1iquid with a fres surface, is of a

profound character, In both cases there is a tendency for a spon=

.
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tanoous increage in the pradients and for a spontaneous formation

of discontinuitics diring compression.

B e s

In the thoory of flow Lirough a Laval nozzle v have shown tint
1t is imposoivle, LY merely using the equationn for a continuous flow

with conslant enthropy, 1o describe a goricn of intermediate processed

in o large region of back presoures,
Finally this 1inmitation of classlcal gasdynamics Was particuhrly
well outlined in the last problem we considered, concerning the motion

of a fas produced by a sudden movement of & plotons In this case if

the piston moves in vhe diroction of lhe (a8, W)a, the difrerential
equations of pasdynamics Joad to absurd triple-valued golutions, il.e.
to solutions widch give three pregs'res, three teumper1tures nnd three
velocities at a given point simultancously.
All thie cages we huave mentioned clearly show t..0 nucessity for
. finding other forms of solubions wiich do not follow directly from
the cquations of rasdynamics of ideal sases (we use wideal® in the
songe that vigscosity and heabt conductivity are absenl).

We may expecl the unknown procosses Lo be characterized by large
pradients so that, to & certain approximation, we may tre.t them as
the propagation of velocity, pressure and ¢ ensity discontinuities =
the so-called shock waves.

Before presenting the nistory of the problem of shock waves we
shall present an elementary derivation of the equation of a shock wave
in very much the same manner as done by Hugoniot in his well-known
nemoires "On the prapagation of & discontinuity" L 56_7, assuming
veforehand thab the discontinuity existe and not considering the ques=

tion of its actuality, stability et
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XI Graphical method of treating the theory of shock waves,

Waves near the critical point,

A very convenient aid for a simple and visual analysis of the
theory of suock waveo is a representation of Lie processes and states
on a dlagran whose axis of the abacessas represents e speciflc
volume 2* and whiose uxls of the ordinates raprecents the pressure P.
It has already Leen pointed cul uhab for avary ;lvon initial point
(print A, p, v, in PMegure 27) there is one dofinite llugonlot curve.
Ve shall anow in Figure 27 how to dslermine graphically t:o pro=-
putation velocity of a siock wave, Ve ghall make voe of thie cijuation
whieh ave us Uhio voloeity of tue ohoek wave as a funclion of the
prosgures and specific volumes wefore and after compressions

_@‘; 24 2= ‘V‘z/é" g -
2 z W (X1 - 1)

For a piven initial state pj, vl, of the svbstance,the term
vl2 before the fraction is a constant and the propac‘ation velocities
of the shock waves, corresponding to various degrees of compression,
depend on the ratio pp— Py/Vp—Vy» i.e. on the slope of the corres-
ponding lines which cannot point pl, vy with points representing the
state Py Vp after compression, Thus it is qguite clear from the draw-
ing that point C (wiich corresponds Lo a preater prossure tiuan point
B) corresponds to a shock wave wich propagates with a higher veloelty

since the slope of the line AC is zreater than the slope of the line

AB, It is quite important that equation (XI = 1) was derived

¢
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initial equations (equation

\
i
\ - by us from enly two
|
|
'l of continuity of mass
|

and equation of continuity

t of momentum) independently
f of the equation of con= 2
tinuity of energy. Tnerefore ‘é
it will ce valid for all %
‘ Fip. 27 Propuration velooity of cages in which the equation E
the shock wave is dotervmined vy of continuity of momentum
the slope of t.o clord, for oX= is not violaued, i.e.
ample, AC, Al, ABj tic velocity of when there are no external
sound is given by the slope of forces such as the friction
the tangent. of gas against thie walls,
For all these cases (in particular for cases when we have prosent chem=
.ical renction or external sources of heat and energy wiich affect only
the energy equation and not tic squation of momentum) expression (XI-1)
% remains valid., In particular,expresaion (XI-1) also pertains to the
3 propagation of detonation in explosive gaseous mixtures /8, 59, 60_7

We should particularly note that eyuation (XI-1) ts obtained by

TR S

constructing the equations of conservation of mags and momentum for
only the initial and final state of the gas in the wave, By making

use of lines AC or AB for computing the velocity we do not imply that

LR R

the intermediate states (see Figure 236) are represented by the points
on these lines.

1f we are interested in the intermediate state of compression
> inside a akock, detonation or other wave front which propagates steadily

through a gas, then in addition to external forces we muet also take

- L -

CONFIBENTIAL
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into account the internal viscoua forces of the gas which drop out

when we compare the initial and [inal state, If for any reason we

could neglact tie effect of viscosity and internal friction wmmm
equation {XI=1l) could be applied to all intermediate states through
which the sulistance pgfnea from ite initial to its final state,
Such is the situation in a dotonation wave wiere tlie width of the

wave depends on tre velocity of chemical reaction and, in general,

is coneiderable so that the effect of viscosity is neglipgible, This

e W G e s SR G S B,

quostion is considered in detail and a complete bitliography is

presented in the works of the author /8 7 /1037, :
It is also casy to find the graphical representation of the vel-

ocity of sound in Figure 27. We oblain the proparation of sound as 4

& limiting case of the propagation of very weak siiock waves, Thus '«"l

the velocity of jropagation of sound on the diagram in Figure 27 J

will be given by the limiting position of the slope of the secant ,

wheroe the second point, corresponding to the final state of the sube
stance, approaches the first point, In other words, the velocity of
sound will be given by the slope of the line which is tangent to the
“l’:‘ Hugoniot curve at a point which represents the initial state of the
substance considered,

Comparing expression (XI-l) for a small Pp — pl\,'mbth ‘the expression
for the velocity of sound c®a - Vga s we conclude that at the
initial point A, the Hugoniot curve touchf; a line of constant entropy.
(Poisson's Curve)

It follows from the drawing that for an ideal gas with constant

specific hoat whose Hugoniot curve is shown in Figure 27, the velocity

-5
GURFIRENTIAL
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of propagation of tiie ghock wave is greater than the velocity of pro=

%
;

pazation of gound in the initiesl gas D ==d,>€, , In the limit,
by increasing the pressure of the shock wave indefinitely, we can get @S5

@ high velocity as we choose for the propagation of the shock wave.

s T TR R

on tle otier hand for a rarefaction wave, wnose final state E (Figure
27) lieo below the initial state, wo would get a propagation velooity
lesp than the velocity of sound, If we conntruct Polsson's curve
through the final state of the compressod £as, for example through
tlie point B, we can obtain a relation between the velocity of the
shock wave and the velocity of sound in the compressed gas. The
velocity of propagation of the wave with respect to the compressed
gas is:

462'2—"— (0-—,“)2 = ?{'22,{:%; J (X1-2)
This cxpression is (uite similar to tne expression for the velocity

of the wave with respect to the initial gas. In Figure 28 the Hugoniob

1
i
R
4
3
&
2
‘E%
|

curve HB 18 constructed through point B which is taken as the initial
state., From the symmetry of the equations we see that if B lies on
y H A then Hp pasees through the point A (see equabions 2X=-10, ll).l
At the point B the HB curve touches Polsson's curve. From the position
i of lines Hy and BA, in Pigure 20, it follows that &7 Sy = O-=
'a so tiat the velocity of sound in the pas compressed by Lue wave is
greater than the velocity of the wave with respect to the compressed
gas.

By means of & /OV- diagram we can consider the question of the

1 Hy and Hb are abbreviations for Hugoniot curves whose initial points

are A and B respectively.
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increase of entropy in a siock wave, We shall compare u.e ex|reesion

for tie variation of the internal energy ol thie ga%in a shock wave

with v.e enerel t.ormedynamnic expresaion for the dirferential of the

¥ .
£
&
2

7
e

energy. In a Biiock wave

AF - L- 8 = A (7)) -3

s R e A TR

e S TN T

R T T

)
% ¥y >
4 Fig 28, The relation between the Figure 29, Tlie increase

G velocity of propacation of the wave

i with respect to the initial state A in entropy during com=
and the velocity of sound in state A
is given by the ratio of Lle slope of pression in shock wave
chord AB to the slope of tle tangent
to curve H, at point A. The relation AB depends on the sifn
betwaen the velocity of pro- ‘
pagation of the wave with respect to a+d magnitude of the area
tie compressed substance in gtute B ’
and the velcs ity ofusound in state B AF 5CPAj AHB 18 the Hugoniot
is given by the ratio of the elope of - v
chord AB and the slope of the tangent curve; APC is the Poisson
to curve Hp ab point B. A direct com-
parison of velocities in different curve.

states is impossible since the co-
off's cient used to get velocity Lrom
slope depends on the specific volume V.

2
Equation (XI-3) is ottained from (V11I-6) if we use specific
volume in place of densitys .
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AL the same time the general expression i o& + /"7/5;64:' If the

volume varies within Lie same limits, then, along the Polsson curve

(isentrope), we huve
4/.5-
f ~£ =4& /é/r‘ ©(X1ak)

1{ we compare the ox|ression for L..e variation of eatropy along 2
tre poigoon curve (P) with the exprecsion Lor Lie -ariation of entropy, |
during si.ock comprecsion, along tie .ugoniol curve (1) we ghull otitain
an expression for the variuatlon Asin entropy during, slock comprescions

745 = /ﬁﬁ‘./y yj //Jo/r' (x1-5)
Interrals (XI=L) and (XI-5) are taken alomv the Poisson curve,

Let vs examine, ty means of Fipure 29, t.¢ relation tetween iwo
terms of the last eyuation.

In this curve APC is thie Poisson curve (isentrope) and Aiii 18
the iluroniot curve., The variation in entropy during compression by
the shock wave is equal to ‘56 - \5;?.-.-. 5-.6 - 5‘, and, in accordance
with equation (XI-5), depends on the difforence tetween area AFEMl

and area APCHM, The product of the atsolute temperaturel and the

ﬁ,_ entropy increment is equal to the diffsrence Letween tieze arsas,

s e B R o - IR S b L5 L L e B GRS

i.e, to vi.e area of [igure APCLF,

The valuve of 7 in equaiion (XI=5) lies 1etween 7z and 75.
To prove this we go from ctate A into state = (Pigure 29) Ly is=-
entropic compression (AC) and a sutseqrent heuting of the gas at

constant volume (CB).

[

{j’ i"}—‘L
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We divide this area into two arts by the line AC, The firet
part is a section whone end pointa A and C are bounded by the segment
ABC of the Poisson curve and by the chord AC, The second part is the
triangle ABC,

We write the equation in tie following form, denoting Ly F the

area of tle figuree:
7145 = é;},@oc - Ff-ﬂ'o/_:y/g A8C (X1-6)

It is casy vo [ind the areefor tho triangle, Wo take the segment
C as the base. Then tlie ..einib will be vy = v2. The lenglli of the

segment HC in the p, v plane is (a%) 48 , and the length of
s

the triantle is
2
# /9—?%’_ % - %)dS.

Substituting in the initial oquation wa get

=F . )
745 = ey -"-A/a'éf'),, (’f’ ”‘) 43 (X1-7)
— Lsey
45 ) s (X1-8)

h = £ )) - and the corraction due to ti
where ¢ 1/9.3&-7’/7; y“) 1o correction due to tho

area of the triangle is small. If 45" "*ﬁ,f'iﬁ )‘b”hen the urea of the
triangle ~AS/7//."V.: m(f{- z_jﬂ?./a an infinitesimel of a higher
order with respect to 4 S and consequently of higher order with
respect to the area of the seginent.,

Therefore the sign of the entropy ciange is determined completely
by the sign of the area of the segment, i.e. by the mutual position
of the Poisson curve and its secant. This in turn depends on the

convexity or concavity of the Poisson curve, i.e. on the sign of the

9 2 =
derivative é;"-ds. If & approaches 7-; then J 5 — oo,
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Thie actually takes place in an ideal gas for _ﬂg’ - ;// y,
when /é -» o on the lugoniot curve. 7<= dorresponds

to a negati.e pressure and to eimilar conditions which have no phiyelcal
sense in the present ocase,

For weak waves it 1s now eagy to find uhe lawe iroverning the

changee of entropy in a shook wave. We shall carry oul tiio calcu=
lations by expanding all expreseions in sories of V4 = Y- z/,’ ’
and retaining evorywhere only Lio major term wilch ¢tives a finite
result dirverent from coro,

The equation for the poisson curve is

2 <
p=p @g%j.dw-rééééwﬂ,,), (XI-9)
The second subscript indicates that the values of the derivatives
are taken for state 1 (point A Figure 29).
Letting L% =2 -4 = & , wa find 1 the pressure /%' at
the point C (Tigure 29). Dropping the subscripts we have:
R R SN S
- 2 3~

We write the expression for the change in entropy, neglecting

(XI-10)

the area of the triangle ABC in (XI-5,°6, 0k
7_".45 = /fr7 .2, - }.a ‘i
_45’._2 (_ aj_éoa’dv-_/zﬁé_.&”‘sw (XI-11

== 224_72} /V,' - %) 3

Comparing the llugoniot equation

.é-'é :(Wi-ﬁ }//62_/@/ (XI-12)

with expression /) = 7o/ 5+ ya;c, we can transpose p and V.

We note that 25 <%, so that w< o

.
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As a result we pet i

S A b i) - p)]

In a weak shock wave the c.ange in the entropy io proportional
to the cube of tle amplitude. At the initial point Lhe Hugoniot curve
touches the Poloson curve, At this point the ourves have a conmon
tangent and a common radius of ourvature (tangency of the pecond order).
The tangency ls accompanied by intersection (see the axt.-a* on of the
curves for '1/‘> 7, on Figqure 29).

These results were first oblained by Jyﬁmet [ 58_7 in a more
complicated mannoer without thn uso of a geometric treatment, Since
the more complete work of Jojguat was puulished before the report
of Zemplen [ 99_7 (4in the second note of Vol. 1L2 Zemplen "notes™
what lie should really "quote" from Jojﬂuet) theo usual practice of
attributing to Zemplen the proof for the impossibility of a rarefaction
wave is completely unfair.

By examining (XI-11) we goe that for an idoal ras the Poluson

v
curve is overywhere comnmex e with respuct to t.e axis of the abscissas.

2 An extremely rapid increase in the specific heat 1s necessary

to realize a condition where with a decrease in k= C// the absolute

valve (.a-?f /5 = .-,é.,é. would decrease with an increase in temperature.

1 Perhaps we should point out once azain that tne calculation of

the area of tie trapezoid bounded by the straight line AKB (Figure 29)
418 based on the expression for the Hugoniot curve which follows from
the laws of conservation applied to the state before and after the
waves, This result is no way connected with the question of how the

state actually varies within the wave (ses XII).
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Thig shiowe that Ulie entropy increases in a compression shock wave,

on the other hand in a sharp rarefaction wave, in wuich the equations

‘ of continuity apply, the ontropy would inorcase. Thus wo see immediately
that the propagation of a rarefaction wave with a thin front (similaxr

to a compression shock wave) in an ideal zas i lmpossible.

For woak waves when the oquation of state is arbitrary we can

use Figure 29 to arrive at conclusions concerning the relation bet=

woen the propagation velocity of a shook wave and the velocity of

sound in the substance before and after compression, For the com-
pression to propagate through the gas in tie form of a shock wave

with a rather steep front, it is nececeary that tlhe Poloson curve

i o i e T AR

be convex dovnwards, i.e. that it nave the form shown in [Mpure 29,

ilowever in this case it is clear from peomotric considerations, that
the slope of the tanpent to the curve at point A mst Le less Lhan

the slope of the secant AB, On the other hand tle slope of the tanpent
at point B, vhich ropresents tie final otate, or the clope of the tan- !
gent at the point C close to B, is greater tian the slope of the aecant.l
Thus we obtain an clementary derivation of the relation first discovered
by Jo;".;uet according to which the compression propagates in the form of
a shock wave if the velocity of second before compression is less than
the velocity of propagation of lhe shock wave while the velocity of

sound in the substance after compression is preater than the velocity of

tha shock wave with rospect to the compress.d substance, 2 3

1 The variation of the yuantity é&-"JS , on which the velocity of
sound depends is of the first order in 2/- 7 during the transition
from A to G or from A to By the variation Ofé";zéjs during the transition

from ¢ to B is of the third, order,

2 For small amplitude the quantities D,Cy and 62 differ by a quantity

which is proportional to the amplitude, The velocity u is also pro=
-12 -
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In case of Poisson curve with an
inverse concavity (Fig, 30 section
AB) compreesion in tho eliock would

be accompanied by decroase in

RS

g
153
¥
L
L
i
t

ontropy oince the area bounded by

the Poisson ocurve is reater than

the area Lounded by the..secant, i

| the verticel lines and the axis ;
of t:.e abscissas, In a substance
in which the Poisson curve has
a concavity of inverse sign, the ).

compression waves will not be very

Fig, 30 Polsson curve with a sharp. A compression produced in
segment having an anomalous some part of the substance, say
convexity upward. Along such by the movement of & piston, will
a segment rarafaction shocle gradually expand like the rare=
waves would be possible, faction wave in an ideal gas con-

sidered above, On the other
hand in s:.ch a substance the rarefaction wave will propagate with an

i extremely sharp front whose curvature will not decrease with time and

2 cont'd

portional to the amplitude. For accuracy 4o amounts proportional to
the syuare of the amplitude, the velocity of the shock wave is equal to
the arithmetic mean of the velocity of sound in the initial state

and the velocity of propagation of a disturbance in the dircction of

movin,
the wave in the compressed nea»'i{ gas € z*"‘ H
D= ¢ rC A
£

-13 -
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In case of Poisson ocurve with an
{nverse concavity (Fig. 30 section
AB) compression in the shock would

be accompanied by decrease in

L il gl Sgd

s e e S AT R o s o e LA

4 \;': ontropy since the area boundad by
nw’ , the Poisson curve is greater than
i.\\ the area Lounded by the.secant,
: ’ |5 the vertical lines and the axis
Lo of t.e abscissas, In a substance
At """; in which the Poiseon curve has ;
a concavity of inverse sign, the %Z
compression waves will not be very '3'
Fig. 30 Poisson curve with a sharp. A compression produced in é
segment having an anomalous some part of the substance, say %
convexity upward. Along guch by the movoment of & piston, will %
a segment rarefaction shock gradually expand like the rare= %
waves would be possibles faction wave in an ideal gas cone

sidered above, On the other
hand in o.ch a substance the rarefaction wave will propagate with an

h extremely sharp front whose curvature will not decrease with time and

2 cont 4
portional to the amplitude, For accuracy to amounts proportional to

the square of the amplitude, the velocity of the shock wave is equal to
the arithmetic mean of the velocity of sound in the initial state
and the velocity of propagation of a disturbance in the dircction of

the wave in the compressed mﬂgj as € _,,1‘44 :

2

-1

3 -
CAHFIRENTIAL
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chapacresrzed
will bo debessm®l Ly emall values of heat conduotivity and viscosity.

This corresponds Lo an inverse relation betwesen thie veloclty of the
shock wave and the velooity of sound, Indeed, in the propagation of
a rarefaction wave wiose initial state is given by point A and final
state by point D (Figure 30), tiie velocity of propagation of the rare-
faction wave AB in state A is determined by the slope of AE and is
freater than the velocity of sound in state A, We can see this from
tue coaracter of the intersection between Lhe curve and the secant
at point A, where the tangent to the Poisson curve is more flat than
the line AB, On the other hand, at point B, wiich describes the state
of the substance after the siarp rarefaction wave has passed, the vel-
ocity of sound is rreater than tie velocity of a finite disiurlance.
Do substances exist in nature for which in some part of the p,
v plane the Poisson curve has a convoxity directed upwards? Ve can
oxpect the appeurance of ouch states ncar tie critical point where
we have a liquid and a gas, Actually, long before the critical point,
the isotherms :ave an inflexion (at the critical point itself the
inflexion of the isotherm also becomes horizontal)., For a substance
with a sufficiently large molecular specific heat, whose isotherms
and adiabatic curves differ by a sufficiently small amount, we can
expect that outsie the domain of two-phase systems when the sub-
stance is completely stable and in one phase, the adiabatic curve
will also have an inverse sign for the second derivative, Tﬁe re-
lation between the structure of Lhe compression wave and the rare=-
faction wave will become inverse compared with the relation between
a sharp compression shock wave and a diffused rarefaction wave in

usual gases away from the critical point,
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Figure 31, which represente the p, v plane for the cace

O = Lo cal/deg. mole, gshows three curves as follows: line I
2_2 < O , the adisbatic ourve
vt )_5 !

passing throug this resion and line I eeparating the cronghatohed

separating the rerlon with (

region of two-phase systeme (the 1ast does not depend on %). The
calculations were carried out with the participation of engineer
F. Ye. Yudin (%;t’bustion Lavoratory , IKhF).

In the eguation of van der Waals the opecific heat at constant
volume dopends only on temperature in the cntire domain of single=-
phase systems. The energy of a homononeocue substance, which

v
patisfies the fan der Waals equation, can Le represented in the

£=£(7) £ Ve

3

’.'1

form:

70 -

R 2 U —
28 4o Jo er
FMgure 31 Adisbatic curves with anomalous conyaxities

in a van der Waals gas with specific heat C, = Lo.
The crosshatched area represents two=phase systems.
Cupve 1I separates the region of states with anomalous

convexities of the adiabatic curve. Under curve Il

2% 0.
(29»‘ )5 <

SORFIENTIAL
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E Thie circumstance considerally simplifies the caleulations le-
; cause the entropy of a van der Waals ras can also be repreeented in
4

the form of a swn of functions of temperature and specific volume.

It would be very interesting to study experimentally the oclock waves

and rarefaction wavcs in a gas with a iigh specific heat in that

i R Caiche S

region where,\u;in expect the above-mentioned abnormalities, For this :
purpcee we can take an organic compound of hish molecular weight b
wiiich will not docompose at the critical temporature,

The eotablishemont, in a general way, of the relation batween ,‘
the velocity of sound in a cubstance btefore and after the pasosage ig
of he shock wave and the change in entropy in a shock wave is g
essential and pratifying sinece it ic clear (see the remark of Thom- %
son reforenced in the article of Kankine /78_7) that the relation ﬁ

betwueen the velocity of tue shock wave and the velocity of sound
determines Liie mechanical stability of Lne wave. It is necessary
that the shock wave propagate with a velocity greater than the vel=
ocity of sound in the gas, which is subjected to its action, for
+the disturbance produced by the siock wave not to move forward with
i sonic velocity. It is necessary that the shock wave propagate with
X respect to the compressed gas with a velocity less than the sonic
velocity in the compressed gas, Only then can we imagine a causative
relation between the motion of a piston, which produces a shock
wave, and the propagation of a shock wave, since the transfer of the
disturbance from the piston to the shockvave front takes place through
a layer of compressed gas, We shall meet the came eriteria
when we study the origin of the shock wave. It is a very satisfying
fact that these criteria of the mechanlcal ‘stability of a shock wave,

which can be perceived directly, can be strictly tied to the sign

- 16 =

CONFIRENTIAL
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of Lhe entropy change in the wave, This gign in general tells us
of the poseibility or impopeibility of propagation of a sliock wave

4

%

i energyY.

which satisfies the equations of continuity of mass, momentum and

The relation between the sign of 45 and the inequalities,

G B e A ek s

which pertain to the veloeity of sound, will e broken only if in

v 91
the inter)ml of pressure change considered, both signs of /%,,i-
are present so that the Poisson curve lLas more than two points of
intersection with the straighu line. The study of complex processes

which have discontinuities and atlached diffused waves is beyond ‘o the

o sty

scope of this book.

XII Structure of the shock wave front.

We vegin the inveslipation of that thin layer of the shock wave
inside which a transition takes place from cne state to another - a
layer uetween the guide lines A and B of Fipure 23§, In the precead=-
ing presentation we did not consider the processes inside this layer
on the basis that the thickness of the layor, which is determined by
dissipative forces, is very small and the results of the processes
in the layer can be obtained from the equations of continuity with-
out a detailed analysis of the processes themselves,

Now we shall be interested precisely in the processes inside
the layer and the thickness of the layer. We shall consider separately

two limiting cases: 1) the case of low viscosity and 2) the case of

BRSO e ST

low heat conductivity. The case of the combined eftect of viscosity

i
ey
2

and conductivity which is more difficult mathematically' (but not phy=-
sically) will not be considered. For it we shall present only the

final expression for the thickness of the transition layer.

-17 -
CONPIDENTIAL
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The first onse ig marked by the fact that equaticn (X1=1)
2 -
& f »Q /b/
e

15 valid not only for the rinal state, which is attained in com=-

preseion, bub for all intermediate states inside the layer,

Indeed this equation follows from the first two continuity
equations = continuity of macs and continuity of momentum,

The squation of state ol a sulslance in simple form (V1II-1)

S« = _— = caﬂ:’?{

ig always putisficd in the prcparation of plane waves. In the pro-
papation of waves in a tube it is necesnary thuy;ﬁ;;;a section of
the tube be constant, 1In addition to Lhis no sutstance must Le
consumed or liberated on the walls of the tubs. To satisfy the mom=
ontum cquation (VI1I-2)

Vs +/odz= cons?l

it is necessary tnat no external lorces act on Lue gubstance, In

considering the propapation in the tube it is nececssary to neglect

EE————

the Iriction apgainst the walls of the tube. Tinally in considering
intermediate states, which are of interest to ue here, it is necessary
(to satisfy (VIII-2) that tie forces of internal friction (viscosity)
be small.
: For a shock wave in a medium vhere the processes are taken into
account by the energy equation, for example the 1iberation of chemical
energy (detonation wave - see /[ 8.7, [59.7, [60]) or heat conduct-
ivity, equation (XI=1) is applicable to all intermediate states.
During the propagation of a shock wave as & whole the velocity, with
which each of the intermediate states moves with respect to the
original state, is the same. In equation (XI-1) we must consider

the quantity D constant, Thus, this equation leads to a linear

.

De . R .
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relation Letween preesure and volume
) *_’gj _g@i 2~ (X11-1)

In the p, v blane (Migure 32) the otate varies alonz a straight
line connacting the pointe wiich deseribe the initial state A and the
final state B of the substance,

If we know the relation Letwuen pressure and dens:ity which is
valid for the entire oliock wave, we can find its thickness by
elementary intepration,

It can be shown that along the straipht line AB the entropy
reaclhes a maximum somewiere (print M, Figure 32) midway betwoen the
initial and final state of the substance,

Indeed, at point A the velocity of the wave with respect to the
substance is greater than the speed of sound; at point B the velocity
of the wave is less than the speed of sound, At some point M the
velocity of the wave is sonic, At this point the straight line AB
is tangent to the Poisson curve and consequently the entropy has

a maximum.l
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linder this aseumption of no
viscosity the crange in entropy V]
accurs enly ae a result or' heat
conduotivity., In a stationary pro=-

cess, when t e coordinates are

chogen so thal tie wave is at rest,

we chiange eanily from a particle

(material) derivative to a der- Fig, 32 A is the initial and B
the final state of bLie ras cone
ivatlve with respect to a pressed by Lue shock wave, The
unbroken curves are Lhe Poiusson
coordinate. curves, i.e, lines of constant

entropy increasing from Sg to

and S, In the absence of
viacoaﬁy but with heat condictivity
present, tie slate changes along

uhe 1ine AB on wihich the entropy
roaches a maximum at point M. In
the absance of heat conductivity
but with viscosity present, the
state changes along Llie broken line
HB on wiiich the entropy increases
monotonically from A to B. The
liugoniot curve is not shown on the
fipure (it alsc passes through A & B
but does not coincide with the
brokerF.ine).

L
’ In Fipure 32 Polsson curves pussing through points A, L, ¥

are labelled Pp, Pp, PM'

]
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In this case the sign of the partial derivative is almo unneceesary
since the process considered ie stationary in the sele.ted syctem
of' coordinates and doee not depend on time, Finally:

/07245‘,/;- =;‘¢Z;.‘:f::,2§rf;, (X11-2)
where A is the conductivity of tie substance, The Lemperature,
at least in a weak shock wave, changes monotonically along the line
AB,

The unknown esolution = the distribution of temperature and
entropy as a function of coordinates - has the form shown on Figure 33,
The point at which the entropy reachos a maximum coincides with the
inflexion point of the temperature curve (a function of the coordinate)

From the evaluations of the preceeding section it is easy to find
tie orders of the nquantities (assuming Lie chance in volumo during
comprescion to Le an infinitesimal of the first order): 4/6,47,—
are of the first order proportional to Ly S, '%’%%’-.5 are of
the second order proportional to ( dy-)z. It is easy to cvaluate the

thickness of tlie shock wave front by inteprating (XII-2) to point M i

£ 7 Gy« HEE) = AEE 0

From our evaluations, it follows that:

dv __ A
dz MZ#% ~ 2(;—‘»;-2 '2';_" (XIl=3a)

“The value of A;& given by the last equation is shown in Figure 33.

The order of magnitude of the coetficient can be evaluated from the

dimension o 4:52 A nE :--' .
A cdr (XII-L)

where f? is the gas constant, The dimensions of the thermal capacity
(specific heat) are cal/deg.gm. The powers of 2~ and € are

selected to obtain a quantity whose dimension is length,

.
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Figure 33. 'The internal structure of the shock
wave of small amplitude with conductivity presont
but with no viscosiby. for definitions see

Mrure 32

The distribution suown in Fipure 33 represents a concrete form
of Rankine's idea /787,
It is curious thav in L@ casc of a strons compression a unique

¢ fundamental diffieulty arises. A temperature maximum is attaincd on

the line AB betwoen the points A and b if the pregsure /g in the

': siock wave is greater than 1.5 y (with ",OA, 87, for a diatomic
’f zas). In addition to this the Lemperature maximum is at 3 hirher pres-
i

svre tian the entropy maximume
When a temperature maximum is present it bocomes impossible to
cons.ruct a continuous distribution of temperature and entropy, in

space, vhich would sutisfy the fundamental equation (X1I-1).

SFIENTIAL
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R TR
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As Rayleieh has shown /797, this difficulty points to the

necesgity of takine viacosity inLo account, llowever when vigcosity

18 taken inte account not only Lie energy equation but the equation

of motion ag woll /[Tour cquation (VIII-2) 7 is changed. Tius in
thie cage the trajoctory of the system in the /o, = plane doviateo
from Lhe line AB, Later uUlietu Saie ronoldorations, witi Lo relerence
to Nayleigh, were presented by bLecker [' 38_7 (quoting & private coim
imnication of Prandtl; see also /76_7).

In Lhe second limiting case, when teat conductivity is absent

and only viscosity acts, the chanro of entropy /}) the wave takes place

L i e s s TR e kickingeen st

only due vo Lhe conversion of work against tfriction into heat [ see &

equation ( 1-18)_7.

P
&5 Ju
P 7 d_t——- ~ 7 g-;j . (X1I-5)

In accordance with the last equation the entropy increases :

nonotonically under the action of viscosity. The change of state
in Lhe /q-y' diapgranm is represented by a curve which lies between the
Poisson curves passing through the initial and final point (broken

line in Fipure 32). We introduce arrain bhe concept of Lue effective

thickness:

Qu _ iy - A
ox ddz g (X11-6)

7S S =K
ZpPEe0TE
Noting that Lhy ~Mp =D * ,dv/—z/' , we easily find

from equation (XII-5) (identifying Dand ¢ by their order of magnitude)s
2
V

dve
The departure of the state from the straight line AB takes

place due to the impulse of the viscous forces, The equation for
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one=dimensional sveady motion isi

/o,lf.’ff_;a’xﬁ. _;;_/_/:;1?5%_/ (X11-9)

Interrabing, we finds

P P4 :"J?' ?’;‘;/‘-‘ 2 +R % = La " ad" (X11-10)

ilowever, from Lie eyuation of continuity wa liwves

- _4 - — . ﬂ/ -
4p == = = consly Zv“ ,,;./;;ﬁ:) (X11-11) !

:
:
!
,
tf
&

o p 2 %,,- _ - _ (X11-12) |
I ; ?'/f/ﬁ =4, #-/}/z-y : g ,A-Jf% =cows? |
Without Lre term f?/fé-,‘:éf-' the oquation !s that of tne slraight ]
line AB, ;
. . p) |
If, according to Fisure 32, ‘%}5 >0 , then Lic Lroken

line tetween the curves .5-'.):9 and J= Jé lies entirely ielow

the straight line, ‘fhorefore, in the wave,

In this case, from the equalion, we find that 7/“%’:(0,111 the 1

(XII-13)

wave 2~ decreasos and compresvion takes place, A rarefaction
wave would have required a ncrative viscosity. Our investipation
of the wave {ront, based on the considerabion of viscosity cffucts,
has lead us to bhe same conclusion as .efore reparding the relation
between the sign of (é?f}')s and the existence of compression or |
rarefaction waves.
When hvat conductivity is completely absent, the decrease in
ne coelficient of viscosity will produce only & decrease in the
g7
ax

thickness of the front, Therefore the derivative === will increace,

Obviously in vtates A and B, g:a . 1n the integration we

should note that /oa.-ea//sf' from bhe equation of continuity of mass,

-2 - ’
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the product ’{‘%‘4‘ will remain constant and the path in tle
plane will remain une.anged,

When heat conductivity ie present, the decreace in thickneons and
increace in derivalive (with respuct to X ) will be limited, Wnen 1{
is sufficiently small Lhe ontire term 7(2/’51 will te snall,We shall
approach 'ne equation /4,-//3*;- eoﬂsé i,0, the equation of a
straight line (see alse tle remarks made above concerning sirong shock
wayog for which Lhe temperature lias a maximum on a gogmont of line AB,
In this case, at soma definite part of tie wave front, it is precisely
the viocosity, no matier how small, tuat deteriines vhe marnitude of
the derivatives).

To determine the order of magnitude of the thickness ve make
use of molecular-kinotic exprossions for the cooffictents of vie-

cooity and heat conductivity, We can engily find, in both limiting

cages: -p:' e
4&@4@_ /b,{f;— "’//2:———-.4{, 3

where /lpis the mean free path of the molecule in the nas.l

(XI11-1L)

For air at atmospheric pressure and taking the Prandtl number
equal to 1, Taylor /937, /72l 7 gives an expression for the thick=

ness of a shock wave in turms of the coefficiont of diffusion B.

Az = AdE (X1I-15)
&, -y

i

In all of the calculations presented above we have considered
an ideal pas for wnich (at least as regards the order of magnitude)
we have the following expression:

&
f) 24 =L
-1 ”_z. '
In the general case it is easy to establish, that, when all other con=
ditions are equal, the thickness of the front is inversely proportional
22
4o the equantity ( ) in accordance with the role which this
5v: &’

quantity plays in the theory of the shock wave,

E:}‘i 1”‘ f TR

n
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For air at atmospheric prescvre B = O,/& c/7 %ee 5

dz= L 4/0 (X11-16)
4 - i, /Jt en, l(-e:n'/ic:)

All evaluations ohow consistently thnt for shock waves of any

strength, in wiich J();"v"and 4,,475 s Lhe trickness of the

front is of the order of the mean free path, Under these conditions

& detailed analysis of the structure of a shock wave and the application

of the differential equations of hydrodynami€s lose their meaning,

~END -
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